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1. Introduction 

I n a recent paper (Gcorgiou, 1968) we have shown, from a classical thermo- 
dynamical and also from a statistical mechanical viewpoint, that the only 
consistent scheme of Lorentz transformations ofthermodynarnical variables 
is as follows 

E =- 7(,') E ~ + c~P ~ V ~ ( ! .1)  

p = -~,(v) v(E ~ +p0 V 0) (1.2) 

p _~pO (1.3) 

V,-- V~ (1.4) 

r ~ y(v) r ~ (1.5)  

Q = y(v) Q0 (i.6) 

s ~= S O (1.7) 

where E,p, p, V, T, Q and S are the energy, momentum, pressure, volume, 
temperature, heat and entropy of the system in an inertial frame ~r;~y(v) 
is the Lorentz factor (1 -- v2/c2) -1/2, and the superscript zero refers to the 
measures of these quantities in the rest-frame cr ~ of the system, the velocity 
of ~r in ~0 being (v,0,0). The transformations of the temperature and heat 
are the Ott-Arzelies (Ott, 1963; Arzelies, 1965) formulae, which have 
replaced the corresponding Planck-Einstein formulae. 

In the aforementioned paper (Georgiou, 1968) some statistical mechanical 
notions were used, but no formalism was dcveloped. In the present work, 
a r6sum6 of  a possible relativistic statistical thermodynamical formalism 
is given, using 'sums over states'. Another formalisrfi is also possible, using 
'integrations over phase-space', but this formalism is only briefly pointed 
out. It is hoped that this work is of interest to physicists because it gives 
a relativistic formulation of  statistical thermodynamics, and it indicates the 
modifications resulting from relativistic considerations. Furthermore, it 
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correlates correctly measurements of any thermodynamical quantity made 
by different inertial observers, by showing that the transformations (1.1) 
to (1.7) are the only possible transformations allowed by the statistical 
mechanics of the system. 

2. Sums over States 

Consider an assembly of N identical atoms in loose energy contact, in 
an enclosure of proper volume V ~ The problem is the distribution of a 
given amount of energy E and a given amount of momentum p over the 
N atoms, subject to the conditions 

~ a,= N, ~ d,E,= E, ~ d ,p ,=p (2.1) 

where di is the time-average of the occupation number of the ith eigenstate, 
given by 

t2 
1 

a,(t) dfi (2.2) di = t 2 t----~ 
t l  

ai being the instantaneous occupation number of this eigenstate. We want 
to maximize ln(NI/al~176176 . . . .  ) subject to the conditions (2.1) in 
o ~ These considerations, together with the fact that at = at ~ = dt ~ give 

- ~2--/t dr~ c2 ] exp (-A - Oupi" ) (2.3) 

where 0, is a 4-vector given by 0, = 7(v)(v,O,O, c)qS, A and ff are invariant 
scalar functions andpt u is the 4-momentum of a particle in the ith eigenstate; 
the product Oupt u has, of course, the invariant value ~ t  ~ Thus, if l ~ and 
l are the measures in ~0 and ~ of a particular quantity of the system, then 

l ~ = ~ d, ~ t, l = ~ at It, (2.4) 

where It ~ and 1~ are the instantaneous contributions to this quantity of 
particles in the ith eigenstate in eo and a, respectively. 

Inducing a variation to the parameters O, and A, we obtain 

3{0 u ~ atpt ~' + NF} = 0 u ~ (3d,)pt u (2.5) 

where the invariant function F is given by 

v.ut% F = l n e a ~  f l t=ln ~ 1- -~T- jexp( -O~p,~)=F~ (2.6) 

The invariant equation (2.5) holds in any inertial system, and it is easy to 
show that it is equivalent to 

3{~b ~, d, ~ ~t ~ + NF} = ~b ~ (3dr ~ Et ~ (2.7) 
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where 
~. (Sd,~ E, ~ = 8Q ~ ~. d,~ ~ = E ~ (2.8) 

are the heat (absorbed) and energy of the system, respectively, in a ~ Thus 
if k is the Boltzmann constant, the temperature T O in a ~ is 

T O = l i k e  (2.9) 
and the entropy is 

1 
S = ~6 ~ t~,~ ~ + k N l n  ~ exp (-r ~ (2.10) 

It may be shown that the heat in a is 

3Q = 7(v) 300 (2.11) 

and that ~ dtp, ~' is not a 4-vector; we have 

~, dipi ~' = (p, E/c)  (2.12) 
where 

v = _ y ( v ) ~  2 ~ d o(,o + c2pO2/3, o) = _7(v)~z(E o +pO V o) (2.13) P 

E = y(v) ~ a,~ ~ + vap~~ ~ = y(v) E ~ + _pO V o (2.14) 
c 2 

are the average 3-momentum and energy in a. Thus the integrating factor 
of the heat is ~/7(v), and so the temperature T in a is 

T = y(v) T O (2.15) 

Referring to equation (2.5), 0u is an integrating factor of ~, (3di)p~ u and 
this defines the 4-vector temperature 

C 2 0tt 
Tv = kOv ~ = 7(v) (v, c) r ~ (2.16) 

In terms of Tt,, equation (2.5) may be written as 

kZr z E (Sd,)P, ~ (2.17) 

This invariant equation, expresses the second law of thermodynamics for 
reversible processes. The relativistic partition function or sum over states 
Z is 

U' exp  ' 18' 

and the thermodynamic ~ function is 

~b = k l n Z  (2.19) 
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In the form given by (2.19), the function ~b may be used by any inertial 
observer to obtain the values of the thermodynamic quantities of the 
system. Thus if T and T4 are the spatial and temporal components of T u 
in a, we find 

1 ",-. 0~b 
p = ~ r .  ~ ~ (2.20) 

e -  Tt'T~' (2.21) aT4 

with similar expressions in a ~ Furthermore, since the eigenvalues of p O 
are proportional to (V~ -a/3, it follows that the pressure is given by 

pO=vO 
OV o 

3. Phase-Space Formalism 
It  is possible to formulate relativistic statistical thermodynamics using 

separate 6N dimensional phase-spaces (/'-spaces), one for each inertial 
observer. Liouville's theorem holds for each such / "  space. The element 
of volume dsC2i in the phase-space of the ith particle in cr is 

�9 :'~ :: dot = dplx dp~, dp~z dxf dy~ dz~ 
and we find that 

dz'-2 i = (1 - v .ufl/c 2) ds ~ 

If  we consider a macrocanonical ensemble of systems, each system having 
N atoms, the distribution functions in cr ~ and cr are 

( ~ f  I ( e f  }N ZO = e exp(-O.~176163 ~ N, Z = ~ exp (-O.p~ ~') df2~ 
F~ ~ ] F~ 

(3.1) 
where h is Planck's constant. It follows that 

Z = ~ " ~ I- ~ ~XP ~l~ d~O~ ~ ~ ~ Z 0 ~3 . 2~ 

and by setting up spherical polar coordinates in the momentum 3-space 
of ~r ~ the expression for Z is simplified to 

Z=[ Nh3 4 eV~ ?(1-'~'u'~176 ] (3.3) 
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Forming  the funct ion ~b = k l n Z  = ~b ~ the discussion of  relativistic macro-  
canonical  ensembles,  follows f rom that  o f  the non-relativistic theory. [See 
for  example,  ter H a a r  (1954).] 
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[Note added in proof: After  an earlier draft  o f  the present  paper  was 
submit ted for  publ icat ion there appeared  a pape r  by Moller  on a similar 
topic [Moller, C. (1968). Mathematisk-fysiske Meddelelser, 36, No.  16]. 
The t rea tment  is purely classical, though it can be adapted  to deal with 
a quan tum mechanical  system, provided the energy levels lie together  
sufficiently densely.] 
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